9 research outputs found

    Bounds on the nonlinearity of differentially uniform functions by means of their image set size, and on their distance to affine functions

    Get PDF
    We revisit and take a closer look at a (not so well known) result of a 2017 paper, showing that the differential uniformity of any vectorial function is bounded from below by an expression depending on the size of its image set. We make explicit the resulting tight lower bound on the image set size of differentially δ -uniform functions (which is the only currently known non-trivial lower bound on the image set size of such functions). We also significantly improve an upper bound on the nonlinearity of vectorial functions obtained in the same reference and involving their image set size. We study when the resulting bound is sharper than the covering radius bound. We obtain as a by-product a lower bound on the Hamming distance between differentially δ -uniform functions and affine functions, which we improve significantly with a second bound. This leads us to study what can be the maximum Hamming distance between vectorial functions and affine functions. We provide an upper bound which is slightly sharper than a bound by Liu, Mesnager and Chen when m<n , and a second upper bound, which is much stronger in the case (happening in practice) where m is near n ; we study the tightness of this latter bound; this leads to an interesting question on APN functions, which we address (negatively). We finally derive an upper bound on the nonlinearity of vectorial functions by means of their Hamming distance to affine functions and make more precise the bound on the differential uniformity which was the starting point of the paper.acceptedVersio

    Gold functions and switched cube functions are not 0-extendable in dimension n > 5

    Get PDF
    In the independent works by Kalgin and Idrisova and by Beierle, Leander and Perrin, it was observed that the Gold APN functions over F25\mathbb {F}_{2^5} give rise to a quadratic APN function in dimension 6 having maximum possible linearity of 252^5 (that is, minimum possible nonlinearity 242^4). In this article, we show that the case of n≤5n \le 5 is quite special in the sense that Gold APN functions in dimension n>5n>5 cannot be extended to quadratic APN functions in dimension n+1n+1 having maximum possible linearity. In the second part of this work, we show that this is also the case for APN functions of the form x↦x3+μ(x)x \mapsto x^3 + \mu (x) with μ\mu being a quadratic Boolean function.publishedVersio

    Higher-order CIS codes

    Full text link
    We introduce {\bf complementary information set codes} of higher-order. A binary linear code of length tktk and dimension kk is called a complementary information set code of order tt (tt-CIS code for short) if it has tt pairwise disjoint information sets. The duals of such codes permit to reduce the cost of masking cryptographic algorithms against side-channel attacks. As in the case of codes for error correction, given the length and the dimension of a tt-CIS code, we look for the highest possible minimum distance. In this paper, this new class of codes is investigated. The existence of good long CIS codes of order 33 is derived by a counting argument. General constructions based on cyclic and quasi-cyclic codes and on the building up construction are given. A formula similar to a mass formula is given. A classification of 3-CIS codes of length ≤12\le 12 is given. Nonlinear codes better than linear codes are derived by taking binary images of Z4\Z_4-codes. A general algorithm based on Edmonds' basis packing algorithm from matroid theory is developed with the following property: given a binary linear code of rate 1/t1/t it either provides tt disjoint information sets or proves that the code is not tt-CIS. Using this algorithm, all optimal or best known [tk,k][tk, k] codes where t=3,4,…,256t=3, 4, \dots, 256 and 1≤k≤⌊256/t⌋1 \le k \le \lfloor 256/t \rfloor are shown to be tt-CIS for all such kk and tt, except for t=3t=3 with k=44k=44 and t=4t=4 with k=37k=37.Comment: 13 pages; 1 figur

    On Two Fundamental Problems on APN Power Functions

    Get PDF
    The six infinite families of power APN functions are among the oldest known instances of APN functions, and it has been conjectured in 2000 that they exhaust all possible power APN functions. Another long-standing open problem is that of the Walsh spectrum of the Dobbertin power family, which is still unknown. Those of Kasami, Niho and Welch functions are known, but not the precise values of their Walsh transform, with rare exceptions. One promising approach that could lead to the resolution of these problems is to consider alternative representations of the functions in questions. We derive alternative representations for the infinite APN monomial families. We show how the Niho, Welch, and Dobbertin functions can be represented as the composition xi∘x1/j of two power functions, and prove that our representations are optimal, i.e. no two power functions of lesser algebraic degree can be used to represent the functions in this way. We investigate compositions xi∘L∘x1/j for a linear polynomial L , show how the Kasami functions in odd dimension can be expressed in this way with i=j being a Gold exponent and compute all APN functions of this form for n≤9 and for L with binary coefficients, thereby showing that our theoretical constructions exhaust all possible cases. We present observations and data on power functions with exponent ∑k−1i=122ni−1 which generalize the inverse and Dobbertin families. We present data on the Walsh spectrum of the Dobbertin function for n≤35 , and conjecture its exact form. As an application of our results, we determine the exact values of the Walsh transform of the Kasami function at all points of a special form. Computations performed for n≤21 show that these points cover about 2/3 of the field.acceptedVersio

    Relation between o-equivalence and EA-equivalence for Niho bent functions

    Get PDF
    Boolean functions, and bent functions in particular, are considered up to so-called EA-equivalence, which is the most general known equivalence relation preserving bentness of functions. However, for a special type of bent functions, so-called Niho bent functions there is a more general equivalence relation called o-equivalence which is induced from the equivalence of o-polynomials. In the present work we study, for a given o-polynomial, a general construction which provides all possible o-equivalent Niho bent functions, and we considerably simplify it to a form which excludes EA-equivalent cases. That is, we identify all cases which can potentially lead to pairwise EA-inequivalent Niho bent functions derived from o-equivalence of any given Niho bent function. Furthermore, we determine all pairwise EA-inequivalent Niho bent functions arising from all known o-polynomials via o-equivalence.publishedVersio

    Bounds on the nonlinearity of differentially uniform functions by means of their image set size, and on their distance to affine functions

    No full text
    We revisit and take a closer look at a (not so well known) result of a 2017 paper, showing that the differential uniformity of any vectorial function is bounded from below by an expression depending on the size of its image set. We make explicit the resulting tight lower bound on the image set size of differentially δ -uniform functions (which is the only currently known non-trivial lower bound on the image set size of such functions). We also significantly improve an upper bound on the nonlinearity of vectorial functions obtained in the same reference and involving their image set size. We study when the resulting bound is sharper than the covering radius bound. We obtain as a by-product a lower bound on the Hamming distance between differentially δ -uniform functions and affine functions, which we improve significantly with a second bound. This leads us to study what can be the maximum Hamming distance between vectorial functions and affine functions. We provide an upper bound which is slightly sharper than a bound by Liu, Mesnager and Chen when m<n , and a second upper bound, which is much stronger in the case (happening in practice) where m is near n ; we study the tightness of this latter bound; this leads to an interesting question on APN functions, which we address (negatively). We finally derive an upper bound on the nonlinearity of vectorial functions by means of their Hamming distance to affine functions and make more precise the bound on the differential uniformity which was the starting point of the paper

    Generalized isotopic shift construction for APN functions

    No full text
    In this work we give several generalizations of the isotopic shift construction, introduced recently by Budaghyan et al. (IEEE Trans Inform Theory 66:5299–5309, 2020), when the initial function is a Gold function. In particular, we derive a general construction of APN functions which covers several unclassified APN functions for n=8 and produces fifteen new APN functions for n=9

    Relation between o-equivalence and EA-equivalence for Niho bent functions

    No full text
    Boolean functions, and bent functions in particular, are considered up to so-called EA-equivalence, which is the most general known equivalence relation preserving bentness of functions. However, for a special type of bent functions, so-called Niho bent functions there is a more general equivalence relation called o-equivalence which is induced from the equivalence of o-polynomials. In the present work we study, for a given o-polynomial, a general construction which provides all possible o-equivalent Niho bent functions, and we considerably simplify it to a form which excludes EA-equivalent cases. That is, we identify all cases which can potentially lead to pairwise EA-inequivalent Niho bent functions derived from o-equivalence of any given Niho bent function. Furthermore, we determine all pairwise EA-inequivalent Niho bent functions arising from all known o-polynomials via o-equivalence

    A search for additional structure: The case of cryptographic s-boxes

    No full text
    We investigate whether it is possible to evolve cryptographically strong S-boxes that have additional constraints on their structure. We investigate two scenarios: where S-boxes additionally have a specific sum of values in rows, columns, or diagonals and the scenario where we check that the difference between the Hamming weights of inputs and outputs is minimal. The first case represents an interesting benchmark problem, while the second one has practical ramifications as such S-boxes could offer better resilience against side-channel attacks. We explore three solution representations by using the permutation, integer, and cellular automata-based encoding. Our results show that it is possible to find S-boxes with excellent cryptographic properties (even optimal ones) and reach the required sums when representing S-box as a square matrix. On the other hand, for the most promising S-box representation based on trees and cellular automata rules, we did not succeed in finding S-boxes with small differences in the Hamming weights between the inputs and outputs, which opens an interesting future research direction. Our results for this scenario and different encodings inspired a mathematical proof that the values reached by evolutionary algorithms are the best possible ones.</p
    corecore